
Efficient Resource Management for the P2P Web Caching

Kyungbaek Kim and Daeyeon Park
Department of Electrical Engineering & Computer Science,

Division of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST),

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

E-mail: kbkim@sslab.kaist.ac.kr and daeyeon@ee.kaist.ac.kr

Abstract

P2P based file sharing systems have become an ex-
tremely popular application and they are highly scalable,
self-configurable and fault tolerant. Some researches ex-
ploit them for the web caching systems to solve the scala-
bility issue. However, they treat the web objects as homo-
geneous objects and there is no concern about the various
web characteristics.

This paper suggests the efficient web caching system
which manages the objects by different policies to exploit
the characteristics of web objects. Basically, we apply the
different caching policies to the objects according to their
size. The small sized objects are stored by itself, but the
large sized objects are stored by dividing into many small
blocks which are distributed in the clients and the object
header block is stored rather than the large object itself.
Moreover, we give large sized objects higher priority than
small sized objects and maximize the effect of hit for the
large sized object which increase the byte hit rate.

We examine the performance of the efficient policies via
a trace driven simulation and demonstrate effective en-
hancement of the web cache performance.

1 Introduction

In these days, peer-to-peer systems have become an ex-
tremely popular platform for large-scale content sharing.
Unlike traditional server-based storage systems, which cen-
tralize the management of data in a few highly reliable
servers, peer-to-peer storage systems distribute the burden
of data storage and communications among thousands of
individual clients. These systems provide large-scale, self-
configuring, and highly scalable distributed storage ser-
vices. To provide scalable storage services, the idle re-

sources of client may be managed efficiently. Generally,
these p2p systems [5], [6], [7], [8] manage the resources by
the DHT (Distributed Hash Table) and they achieve the
good load-balance and the efficient routing.

Some researches [4], [2], [1] exploit these p2p systems
to support the web caching system. In the web caching sys-
tem, the main limitation of the performance is the size of
the cache storage. When the client community increases in
size, the number of the requested objects also increases and
the web caching system needs more storage to conserve the
level of the performance. They address this limitation with
the residual storage of clients which is managed by the peer-
to-peer method. Every client which wants to use the proxy
cache system provides the storage of itself and this storage
is organized into the peer-to-peer based proxy cache system
which is used to store requested objects. Each client uses
DHT based p2p protocol to find the place where an object
reside in the cache system and each client only manages its
small DHT. When the number of clients increase, the stor-
age for the cache system increases automatically and the
cache system also preserves the level of the performance
without any management cost.

Though these p2p based web caches have many advan-
tages, there is common problems which limit the growth of
the performance. First, these p2p based caches deal with
web objects as homogeneous objects. Because of the na-
ture of DHT based p2p protocol, they match an object to a
client which has the numerically closest node ID to the ob-
ject ID. However, the size of the web object is very various
from 10byte to 10Mbyte or more and the storage of a client
is limited. According to these facts, the loads of clients are
unbalanced and some clients can not store the large sized
object whose size is bigger than the maximum size of its
storage. This behavior exhausts more outgoing bandwidth
and reduce the performance of the web cache system. Sec-
ond, they don’t consider the characteristics of web objects.

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop

0-7695-2388-9/05 $20.00 © 2005 IEEE

The small sized objects are requested frequently but the
large sized objects are not. However, when the large sized
objects hit, it reduces much more external traffic than the
small sized objects. Though these diverse characteristics of
the web objects exist, the previous p2p based caches can not
store large sized objects with efficient way, and they try to
store more small sized objects and evict large sized objects
as soon as possible, to increase the hit ratio and to make a
response for them as fast as possible. This management in-
creases the hit ratio dramatically but the byte hit ratio does
not, because there is few chance for large sized objects to
hit. Consequently, even if we use previous p2p based web
caches, we can not reduce outgoing traffic efficiently.

In this paper, for the web caching system to exploit the
characteristics of web objects efficiently, we manage the
distributed storage with the different caching policies which
are dependent on the size of the web objects. Basically,
we concentrate on storing large sized objects efficiently. If
the number of clients which want to use the cache system
increases, the total storage of the whole cache system in-
creases too. This feature makes enough storage to store the
requested objects, especially small sized objects and we can
get the high hit rate. However, because of the limited stor-
age of clients and low priority of large sized objects, we can
not exploit the effect of the hit for the large sized objects
which reduces the internet traffic enormously. If we store
large sized objects efficiently, we can achieve not only the
high hit rate but also the high byte hit rate. To store large
sized object efficiently, we suggest two policies : storage
policy and replacement policy.

For the storage policy, the small sized objects are stored
by itself, but the large sized objects are stored by dividing
into many small blocks because each client does not has
enough storage for the whole of the object. Each client
which stores large sized objects just obtains the header
objects for them and data blocks are distributed in other
clients. According to this, the storage overhead for each
client reduces and is balanced. The proxy cache which
is used in the central server based p2p web caching sys-
tems [2], [1] stores only small sized objects and the header
objects for the large sized objects to achieve the high hit
rate.

When a cache needs space for new objects, it evicts less
useful cached objects which are selected by our replacement
policy. In this case, we evict small sized objects first. That
is, we give the large sized objects higher priority than the
small sized objects to increase the availability of the large
sized objects. To prevent that the missing just one block of
the large sized object spoils the whole of the object, we ap-
ply the n-chance replacement algorithm to the clients. This
policy permits the chance of moving blocks for n times be-
fore evicting the blocks and makes the availability higher.

This paper is organized as follow. In section 2, we de-

(a) Central server based system

(b) Fully decentralized system

Figure 1. Peer-to-peer based web cache sys-
tems

scribe the peer-to-peer web caching briefly. Section 3 in-
troduce the detail of storing large sized objects and cache
replacement policies. The simulation environment and the
performance evaluation are given in section 4. Finally, we
conclude in section 5.

2 Background

The web caching system stores the previous requested
objects for the future requests. To increase the performance
such as the hit ratio and the byte hit ratio the cache needs
enough storage, and a growth in user population creates a
need for new storages. That is the scalability issue which
can not be solved by ordinary web caching system. In re-
cent years, new solutions have been proposed to utilize the
residual client storage which is managed by p2p method to

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop

0-7695-2388-9/05 $20.00 © 2005 IEEE

address the scalability issue. These solutions can be cat-
egorized into two types: the central server based systems
[1], [2] and the fully decentralized systems [4]. The cen-
tral server based systems use client storages as backup stor-
ages. As shown in figure 1(a), if a client request misses in
local browser cache and the proxy cache, the proxy server
will find the right object in another client’s storage. In [1],
the proxy server connecting to a group of networked clients
maintains an index file of data objects of all clients’ caches,
but in [2], the proxy server only maintain small DHT which
is used to construct client-cluster. In [4], a fully decen-
tralized, p2p web cache, called Squirrel, is proposed. Web
caching workloads are taken by all the clients and the ded-
icated proxy server is eliminated. Figure 1(b) shows the
basic operation of Squirrel.

In these systems, they uses a self-organizing, p2p rout-
ing substrate , for its object location service, to identify and
route to the home node that cache copies of a requested ob-
ject [5], [6], [7], [8]. In a self-organizing and decentralized
manner, these protocols provide a DHT that reliably maps
a given object key to a unique live node in the network. If
a node wants to find an object, a node simply sends a query
with the object key corresponding to the object to the se-
lected node determined by the DHT.

According to this behavior, in previous systems, an ob-
ject is mapped to a live node. Because the web objects
have very various size from 10byte to 10Mbyte or more,
though the p2p protocols balance the number of objects for
which each client is responsible, the storage usage and the
requested traffic is unbalanced. Moreover, because the stor-
age of a client is small and limited by the owner who is
selfish maybe, this can not store some large sized objects
whose size is bigger than the maximum client storage. Con-
sequently, the load unbalance occurs and the byte hit rate
is limited; that wastes more external bandwidth even if we
solve the scalability problems with the p2p method.

3 Proposed Idea

3.1 Handle of large sized objects

In both types of p2p based web caches, an object is
stored in the corresponding client, called home node, which
has numerically closest node key to the object key. Small
sized objects can be stored at each home node by itself.
However, each client supports the residual resource which
are not used by a client and it is too small to store the whole
of the large sized object. To solve this problem, we break up
the large sized object into many small sized blocks and store
these blocks to many clients. Each block has the block key
which is obtained by hashing the block itself and the home
node for the block key stores the block. According to this,
all of blocks for a large sized object are distributed in the

Figure 2. SOL(Small sized Object List) and
LOL(Large sized Object List)

clients and the storage overhead for each client reduces and
balances.

We use the index based allocation method to store large
sized objects, because this method is simple ,cost-effective
and easy to access randomly. First of all, we need the ob-
ject header block which has the basic information about the
large sized object, such as URL, size and modified time,
and indirect pointers (IP), such as the single indirect IPs, the
double indirect IP and the triple indirect IP. We do not use
direct pointers in the object header block. In the general in-
dexed method, the direct pointer is used to store small sized
files to avoid making unnecessary index blocks. However,
the size of the stored objects is enough large to neglect the
overhead of index blocks. The home node for an large sized
object stores this object header block instead of the object
itself.

An index pointer indicates an index block by using index
block key which is the hashed value of the index block it-
self. The index block is composed of URL, the block point-
ers which address data blocks by using data block key and
the range of the block pointers. The data block is the leaf
block of this method and stores the real data chunk. Each
data block has URL and block number which is assigned
continuously from the start of the object to the end.

3.2 Storage policy

Figure 2 shows how the client or proxy stores the re-
quested objects. We use two lists; the Small sized Object
List(SOL) and the Large sized Object List(LOL) to store ob-
jects. The SOL is the simple linked lists of the small sized
objects, because the small sized objects are stored by itself.
The LOL is the linked lists of the object header blocks of
large sized objects and each header has its block list which
manages the index and data blocks of the large sized object

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop

0-7695-2388-9/05 $20.00 © 2005 IEEE

on this storage.
In the fully decentralized system where there is no cen-

tral server, every client use both of the SOL and the LOL
to store both type of objects. However, in the central server
based systems, there is a powerful proxy server and clients
just act as backup storages which store evicted objects from
proxy server. Because the central server should handle
the whole of requests and has very much connections with
clients, it has to process a request as soon as possible to
reduce the connection overhead. In this case, the role of
the central server is different from the role of clients. The
clients use both of the SOL and the LOL, otherwise the cen-
tral server uses the SOL and the LOL without index and data
blocks. According to this policy, the central server store
more small sized objects and its hit rate increases more.

3.3 Replacement policy

All of web caches have the limited storage and they need
the replacement algorithm that chooses which objects are
evicted when the new objects is requested and new storage
is needed. Generally, the web caches evict large sized ob-
jects as soon as possible to store more small sized objects.
This make the hit rate higher, but the byte hit rate decreases.
To prevent this degradation of the byte hit rate, we should
give the large sized objects more chances for their hits.

In the clients, we give the large sized objects higher pri-
ority than the small sized objects to increase the availability
of the large sized objects. In figure 2, if a cache needs space
for new objects, it first evicts ”D” which is a small sized
object and if it needs more space, it evicts more small sized
objects until the SOL is empty. If a cache needs space and
the SOL is empty, we have to evict the blocks of large sized
object. In this case, we evict ”B20” which is the last data
block of the least recently used large sized object. However
in the proxy, because it does not store the index and data
blocks of large sized objects and there are very many small
sized objects, the replacement occurs at SOL only. This be-
havior increases the byte hit rate enormously.

Large sized objects are distributed in the clients very
well, but missing just one block can spoil the whole of
the large sized object. To prevent this block missing which
spoils the large sized object, we use n chance replacement
policy. When a client evicts a block, it first regenerates the
different block key by hashing the block and an optional
suffix which is the random value. To move the block cor-
rectly, the client finds the object header block and the index
block by URL and the block number of the evicted block
and update the block pointer with the new block key. We
permit this chance of moving blocks for one large sized ob-
ject until the number of the chance is bigger than the thresh-
old value, n. If an large sized object uses all of n chance,
whole of blocks of the object is removed. In our simulation,

Traces Trace 1 Trace 2

Measuring day 2001.10.08 2001.10.09
Requests Size 9.02GB 11.66GB
Object Size 3.48GB 4.92GB
Request # 699280 698871
Object # 215427 224104
Hit Rate 69.19% 67.93%

Byte Hit Rate 63.60% 57.79%

Table 1. Traces used in our simulation

the n value is 5.

4 Evaluation

In this section, we present the results of extensive trace
driven simulations that we have conducted to evaluate the
performance of our caching policies. We design our p2p
based web cache simulator to conduct the performance eval-
uation. We have assumed that we simulate the behavior of
a proxy cache effectively. The proxy cache is error-free and
does not store non-cachable objects: dynamic data, larger
size data than total cache storage, control data, and etc.
We also assume that there are not any problems in the net-
work, such as congestions and buffer overflows. The size
of a proxy cache is 200 MBytes and each client has the 10
MBytes storage. We assume the large sized object is bigger
than 1Mbytes and the size of blocks for them is 32KByte.

In our trace-driven simulations we use traces from
KAIST, which uses a class B ip address for the network.
We show some of the characteristics of these traces in Table
1. Note that these characteristics are the results when the
cache size is infinite.

We compare five systems such as only proxy (P), the cen-
tral server based system (PC), the central server based sys-
tem with our policy (PCL), the fully distributed system (C)
and the fully distributed system with our policy (CL). P, PC
and C use the LRU policy for the object management.

4.1 Hit rate and Byte hit rate

Figure 3 and 4 show comparisons of the hit rate and the
byte hit rate. In figure 3, we find that the p2p based web
cache achieve higher hit rate than the normal web proxy
cache. However, in figure 4, even if the hit rate of the fully
distributed system is much higher than the only proxy, its
byte hit rate is about half of rate of the only proxy. In this
system, the client which has limited cache storage can not
store large sized objects and it can not get the effect of the
hit for large sized objects. However, in fully distributed sys-
tem with our policy, the hit rate is slightly lower than the

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop

0-7695-2388-9/05 $20.00 © 2005 IEEE

(a) Trace 1

(b) Trace 2

Figure 3. Hit rate comparison

fully distributed system, but the byte hit rate is much big-
ger. Additionally, if we use our policy, when the number of
clients increases the hit rate and the byte hit rate increase
remarkably, otherwise if we do not use the policy, there is
little increment. According to this, if we handle the large
sized object efficiently in p2p based web cache systems, we
achieve not only the high hit rate but also the high byte hit
rate.

4.2 Control Traffic

We divide large sized objects to many small blocks and
we need more control traffic to gather the distributed blocks
such as lookup messages of p2p substrate, requests for in-
dex blocks and requests for data blocks. In our simulation,
we set the block size to 32 KB and set the size of a control
message to 32 B. Figure 5 shows the comparison of the con-
trol traffic. According to our expectation, when we use our
policy we use more control traffic.

We find that the p2p based web cache system uses more
control traffic than normal proxy cache system. The fully
decentralized system use much more control traffic than the
central server based system, because the lookup for the p2p
substrate need the multiple routing hops. However, though

(a) Trace 1

(b) Trace 2

Figure 4. Byte hit rate comparison

there is the additional control traffic, the p2p based web
cache systems with our policy achieve the higher byte hit
ratio. Consequently, the increment of the performance of
p2p based web cache systems with our policy covers up the
additional control traffic for the large sized objects or the
lookups.

5 Conclusion

In this paper, we suggest the efficient policies for the p2p
based web caching systems to exploit the characteristics of
web objects. Basically, we apply the different caching poli-
cies to the objects according to their size: storage policy and
replacement policy. The small sized objects are stored by it-
self, but the large sized objects are stored by dividing into
many small blocks because each client does not has enough
storage for the whole of the object. The clients store both
types of objects which are small sized objects and all blocks
of large sized objects. The proxy stores small sized objects
and the header objects for large sized objects to achieve high
hit rate and reduce the proxy overhead. We give large sized
objects higher priority than small sized object and maximize
the effect of hit for the large sized object which increase the
byte hit rate. The trace based simulation confirms that our

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop

0-7695-2388-9/05 $20.00 © 2005 IEEE

(a) Trace 1

(b) Trace 2

Figure 5. Control traffic comparison

policies is efficient and when we use any p2p based web
cache systems with our policy, these systems achieve not
only the high hit rate but also the high byte hit rate. Espe-
cially, the central server based system with our policy gets
the best performance.

References

[1] L. Xiao, X. Zhang, and Z. Xu. On Reliable and Scalable
Peer-to-Peer Web Document Sharing. In Proceedings of
International Parallel and Distributed Processing Sym-
posium,(IPDPS’02), April 2002.

[2] K.Kim and D.Park. Efficient and Scalable Client Clus-
tering For Web Proxy Cache. IEICE Transaction on In-
formation and Systems, E86-D(9), September 2003.

[3] J.Wang. A Survey of Web Caching Schemes for the In-
ternet. ACM Computer Communication Review, Octo-
ber, 1999.

[4] S.Iyer, A.Rowstron, and P.Druschel. Squirrel: A de-
centralized peer-to-peer web cache. In Proceedings of
Principles of Distributed Computing’02, 2002.

[5] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and
H.Balakrishnan. Chord: a scalable peer-to-peer lookup
service for internet applications. In Proceedings of
ACM SIGCOMM 2001, August 2001.

[6] A.Rowstron and P.Druschel. Pastry: scalable, de-
centralized object location and routing for large-
scale peer-to-peer systems. In Proceedings of the In-
ternational Conference on Distributed Systems Plat-
forms(Middleware), November 2001.

[7] B.Y.Zhao, J.Kubiatowicz, and A.Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing. UCB Technical Report UCB/CSD-01-114,
2001.

[8] S.Ratnasamy, P.Francis, M.Handley, R.Karp, and
S.Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM 2001, 2001.

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop

0-7695-2388-9/05 $20.00 © 2005 IEEE

